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Abstract

In this paper, we present a method for performing anisotropic adaptive computations. The

discontinuous Galerkin method that is used for solving transient flow problem is briefly intro-

duced. We develop then an error indication technique that provides directional error informa-

tion in order to build a non uniform metric field. We present two sample problems involving

hundred of mesh refinements, both in 2D and 3D.
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1 The Discontinuous Galerkin Method

Transient flow problems involving wave propagation are of great interest in computational

fluid dynamics. An accurate tracking of features like moving shocks or fluid interfaces in

an Eulerian fashion implies multiple mesh adaptations in order to follow complex features

of the flow. The discontinuous Galerkin method (DGM) is a good candidate for solving our

problems of interest. The DGM can be regarded as an extension of finite volume methods

to arbitrary orders of accuracy without the need to construct complex stencils for high-order

reconstruction. We seek to determine u(Ω, t) : R
3 × R → L

2(Ω)m = V (Ω) as the solution of

a system of conservation laws

∂tu + div ~F(u) = r. (1)

With the aim of constructing a Galerkin form of (1), let (·, ·)Ω and 〈·, ·〉∂Ω denote the standard

L
2(Ω) and L

2(∂Ω) scalar products respectively. Multiply equation (1) by a test function w ∈

V (Ω), integrate over Ω and use the divergence theorem to obtain the following variational



formulation

(∂tu,w)Ω − (~F(u), gradw)Ω + 〈~F(u) · ~n,w〉∂Ω = (r,w)Ω , ∀w ∈ V (Ω). (2)

The physical domain Ω is first discretized into a collection of Ne elements Te =
⋃Ne

e=1 e called a

mesh. The continuous function space V (Ω) containing the solution of (2) is then approximated

on each element e of the mesh to define a finite-dimensional space Ve(Te). With discontinuous

finite elements, Ve is a “broken” function space that consists in the direct sum of elementary

approximations ue (we use here a polynomial basis P
q(e) of order q):

Ve(Te) = {u | u ∈ L
2(Ω)m,ue ∈ P

q(e)m = Ve(e)}. (3)

Because all approximation are disconnected, we can solve the conservation laws on each ele-

ment. Now, a discontinuous basis implies that the normal trace Fn = ~F(u) · ~n is not defined

on ∂e. If ue and uek
are the restrictions of solution u, respectively, to element e and element

ek, a numerical flux Fn(ue,uek
) is usually used on each portion ∂ek

of ∂e shared by element e

and neighboring element ek. We have then a DG formulation

(∂tue,w)e − (~F(ue), gradw)e +
ne

∑

k=1

〈Fn(ue,uek
),w〉∂ek

= (r,w)e , ∀w ∈ Ve(e), (4)

where ne is the number of faces of element e. Several operators are possible [1, 2]. Herein, a

quasi-exact Riemann solver is used to compute the numerical fluxes and a slope limiter [3] is

used to produce monotonic solutions when polynomial degrees q > 0 are used.

2 An Error Indicator

For q = 1, the following quantity is used as an error indicator:

|e|(∇ε)e =

ne
∑

k=1

∫

∂ek

(ue − u+
ek

)

2
~nk ds (5)

where u is a scalar quantity depending on u, |e| is the volume of element e and (∇ε)e is a

gradient dued to downwind jumps (ue −u+
ek

) of the solution that show super-convergence [4].

We use the 3 principal directions ~hk, k = 1, 2, 3 of the Hessian Hi,j(u) = ∂2u
∂xi∂xj

to compute

directional errors (∇ε)e ·~hk. In each principal direction ~hk, we compute a directional size field

that takes into account directional errors.



The mesh adaptation based on the directional size field is then performed by means of

some local mesh modifications [5]. In case of transient computations, the mesh-to-mesh in-

terpolations are performed using some local projection schemes. Those are are differentiated

with respect to the nature of each atomistic mesh modification operator: operators including

only topological modifications, operators including only geometrical modifications, operator

including both topological and geometrical modifications.

3 Examples

We present the results of two compressible inviscid flow problems involving the solution of the

Euler equations [6] by a DGM. The three-dimensional Euler equations have the form (1) with

u = {ρ, ρvx, ρvy, ρvz, E}t, ~F(u) = {ρ~v, ρvx~v + P~ex, ρvy~v + P~ey, ρvz~v + P~ez, (ρE + P )~v}t

and r = 0 Here, ρ is the fluid density, ~v the velocity, E the internal energy, P the pressure

and ~ex, ~ey and ~ez are the unit vectors in the x, y and z directions, respectively. An equation of

state of the form P = P (ρ, E) is also necessary to close the system. Here, we have chosen the

perfect gas equation of state P = (γ − 1) ρ
[

E − ‖~v‖2

2

]

with the gas constant γ = 1.4.

One of the most widely known models of blast waves is the famous Taylor-Sedov point

source solution. The Sedov problem [7] involves the self-similar evolution of a cylindrical or

spherical blast wave from a delta-function initial pressure perturbation in an otherwise homo-

geneous medium. In our example, we have made 2 Sedov explosions collide into a square

domain that contains 3 rectangular obstacles (Figure 1). In practice, we initialize the code by

depositing a quantity of energy E = 1 into a small region of radius dr. The pressure inside

this volume, P0, is given by P0 = 3(γ−1)E
3πdr2 . Enerywhere else, the density is set to ρ = 1 and the

velocity is null initially.

We see on Figure 1 two meshes after different numbers of adaptations. The collision

of the two blasts creates a very high density region in the center of the system that rapidely

becomes unstable. We observe on Figure 1 the power of anisotropic mesh refinement to capture

accurately complex features resulting of the various instabilities of the flow.

We have finally ron a one blast Sedov problem in 3D. One picture of the results is shown

on figure 1.



Figure 1: Mesh after 25 adaptations (left) and mesh+density contours after 227 adaptations
(center) for the 2D problem. The right picture shows a cut of the mesh and some cuts of the
density for the 3D Sedov problem.
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